
IF2211 Algorithm Strategies Paper, Semester II Year 2021/2022

Application of String Matching in Identifying
the Imitation of a Theme in a Fugue

Ahmad Alfani Handoyo – 13520023
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

13520023@std.stei.itb.ac.id

Abstract— A fugue is a style of composition dominantly used
in the baroque period where a main theme is introduced at the
beginning and is then repeated in imitation frequently in a
contrapuntal manner. This paper aims to identify the imitation of
the initial theme by applying a brute-force string-matching
algorithm of the theme to the rest of the fugal composition.
Successive note intervals are used to represent each note in the
composition to address the issue of imitation in different pitches.

Keywords—string matching; fugue; theme and imitation.

I. INTRODUCTION
For a lot of people, western classical music holds a special

place and feel that cannot be replicated with other genres of
music. Whether that person is a casual listener or a music
enthusiast, there is something in classical music for everyone.
A college undergrad may tune in to a Chopin étude for the
purposes of studying due to its calming nature whereas a music
professor may crank up to a Bach fugue studying its
counterpoint structure. Classical music resonates with a wide
range of demographic in such a raw manner due to its
unlimited potential in expressing emotions through harmony,
beauty, and grandiosity.

Classical music has stood the test of time because of its
unsurpassed quality. For many generations, musicians and
historians alike have studied it thoroughly and extensively,
digging deep down into its roots and structures. Right now,
classical music is being taught in many prestigious music
schools and conservatoriums all around the world. Although
many critics say that the choice of using classical music in
everyday music curriculum is considered music whitewashing,
the truth be told that classical music provides an outstanding
platform for musical students and professionals to delve down
into the bare structure and intricacies of music such as
harmony, tone, rhythm, and emotion.

Perhaps an aspect of music that are important and go hand
in hand especially with classical music is virtuosity. Classical
music provides a unique pedestal for musicians of all
backgrounds to show off their virtuosity. Whether that
someone is a composer or a player, if one is to put the effort
into practicing hard enough, that someone can eventually
become masterfully skilled in their arts. Sometimes, this
display of skill supersedes what is previously thought humanly
possible, reaching a level of virtuosity able to bedazzle an

outsider into appreciating the effort going in to masterfully
craft the art.

Throughout history, there have been many virtuosos that
completely changed and revolutionized music. For pianists,
besides composers such as Sergei Rachmaninoff and Frédéric
Chopin, Franz Liszt may be the figure that many look up to as
the piano virtuoso. His compositions break the barriers on what
is humanly thought possible on the piano. Extremely advanced
and difficult techniques were no longer the oddity but the norm
to play his pieces. Yet, even with all these difficulties his works
are cherished and frequently played in many recitals because
they bring out the best in what a pianist can do. Pianists look
up to his work as their virtuosic writing allows them to flex
their talent, putting on a performance able to amaze the
audience.

Going back further, Liszt took many inspirations from
previous virtuosos. Perhaps his most notable inspiration is
violinist and composer Niccolò Paganini. Many violinists
tremble when they hear the name Paganini due to his extremely
virtuosic violin writing and playing. His 24 Caprices for Solo
Violin sets the bar for many world class violinists. The
techniques required to play these caprices take years to develop
and many more to master and perfect. His work not only
affects violin playing but also classical music in its entirety.
Many other composers take inspiration from Paganini’s
caprices, setting its themes and variations in new virtuosic
settings in many different instruments.

It is undoubtable that in the case of virtuosity in classical
music, Johann Sebastian Bach reigns supreme. Many
musicians even consider Bach as the father of classical music.
Throughout his lifetime, he has composed more than a
thousand pieces and works. These compositions are considered
sacred, leaving a legacy behind for generations of musicians
and composers to come. His works treat harmony and structure
in a very virtuosic manner, in a precision like no other
composers that has come after him. His use of polyphony,
tonality, and counterpoint surpasses many before him in such a
beautiful accordance, almost such in a mathematical accuracy.

His ingenuity is perhaps most notably shown in his fugal
works. Fugues are well known to be extremely difficult to
compose due to its strict counterpoint nature. Any musician
who has tried to compose a fugue should know the difficulties
that arise in trying to be establish a fugal structure yet

mailto:13520023@std.stei.itb.ac.id

IF2211 Algorithm Strategies Paper, Semester II Year 2021/2022

maintaining a harmonious piece that is pleasant to the ear. Yet,
throughout his lifetime Bach has written hundreds of fugues
almost with such an ease unlike any other composers. One of
his works on fugues, fittingly called the Art of the Fugue, has
been thoroughly studied by many music experts and
professionals in hopes to gain knowledge of this virtuosic style
of writing that is the fugue.

This paper aims to provide a better understanding of the
fugue by trying to analyze the subject, the imitation of the
initial theme, by applying string matching of the theme to the
rest of the fugal composition. The automation of identifying the
variations of the theme can provide a better experience in
trying to understand a fugue and its intricacies. Hopefully, this
paper can serve its function as a tool to help music experts and
professionals in studying the structure of fugues.

II. BASIC THEORY

A. String Matching
String matching is a type of algorithm that is used to search

the occurrences of a pattern in a text. The pattern is a sequence
of characters in a string which has m length of characters. The
text is also a sequence of characters in a string which has n
length of characters. What uniquely identifies the pattern from
the text is their length. The text has a way longer length of
characters than the pattern, or in other words m << n, much so
that the pattern is tiny compared to the length of the txt. A
string is a data structure or type that contains within it a
sequence or a combination of letters, numbers, and other
characters (whitespace, punctuation marks, etc.). An example
of string matching is as shown below with text T and pattern P.

T = The girl from Ipanema goes walking
P = Ipanema
Here the pattern “Ipanema” is searched upon the text “The

girl from Ipanema goes walking” and is found to start at
character of index 14.

There are two very important concepts concerning a string
structure. The prefix and the suffix. The prefix is a character, or
a sequence of characters that appear at the start of a string. The
suffix on the other hand is a character, or a sequence of
characters that appear at the end of a string. Say there is a
string S with total number of characters m. A prefix p is a
substring of S such that p has index S[0…k], where k is an
index anywhere between 0 and m-1. On the other hand, a suffix
s is a substring of S such that s has index S[k…m-1].

For example, take a string S with a sequence of characters
“Ipanema”. All possible prefixes of S are “I”, “Ip”, “Ipa”,
“Ipan”, “Ipane”, “Ipanem”, and “Ipanema”. On the other
hand, all possible suffixes of S are “a”, “ma”, “ema”,
“nema”, “anema”, “panema”, and “Ipanema”.

String matching is used for a variety of problem solving in
the computer science world, especially for ones dealing with
strings. A few examples include a search engine service such
as Google, Bing, and Yahoo, detecting plagiarism in a
document, and in the field of bioinformatics where DNA
sequences are matched to find patterns.

There is already a dozen of string-matching algorithms
currently existing, each with their own pros and cons. In this
paper however, only the brute-force algorithm is discussed.

B. Brute-Force Algorithm
A brute-force algorithm for string matching, like many

other brute-force applications will in theory always find the
solution to any given problem which in this case is the
occurrence of a pattern in a text. However, in searching for this
solution, every possible solution must be explored. Thus, the
outcome of the solution may not be the most optimal.

In general, a brute-force algorithm for string matching
entails this sequence of steps. First, start the string matching
from the start of the text, which in this case starts from the left
and ends on the right. In this state, match each character one by
one from left to right from the pattern to the text in the same
position. If all characters on the pattern match up with the ones
on the text, then the pattern is considered to have been matched
with the text and the algorithm is halted. However, if a
character on the pattern at any point does not match with a
character on the text in the same position, shift the pattern to
the right by one on the text and repeat the matching process
previously stated again until the right end of the text.

It is important to note that the matching process and the
shifting ensures that with each new shift on the text, the
matching begins again at the start index of the text. If the right
end of the text is reached and the pattern is still not yet matched
to the text, it can be concluded that the pattern does not exist on
the text.

Fig. 2.1. Example of brute-force algorithm string matching.

An example of the algorithm is shown above with the

pattern “NOT” and text “NOBODY NOTICED HIM”. The
algorithm starts at the first index of the text and compares the
pattern to the text. At the first index the letter N and O matches
with the text, but the T does not and so the pattern shifts to the
right by one. At the second index, N already does not match
with the second index of the text with letter O and so the
pattern shifts again. Repeat this a couple of times. When
reaching the eighth index, the letter N, O, and T in the pattern
all matches with the sequence of letters on the text starting on
the eighth index. Thus, a conclusion can be reached that the
pattern exists on the text starting on the eighth index.

IF2211 Algorithm Strategies Paper, Semester II Year 2021/2022

With a pattern of length m and text of length n, a few
scenarios arise regarding the time complexity of the brute-force
algorithm for string matching.

A worst-case scenario in which a majority of the pattern
prefix matches with a lot of characters in the text and/or the
pattern is found at the end of the text yields a maximum
comparison of m(n-m+1) characters, which in turn has a time
complexity of O(mn). An example of this is with a text
“aaaaaaaaaaaaac” matched with a pattern “aaac”.

A best-case scenario in which the first character of the
pattern never matches with any character of the text yields a
time complexity of O(n) where the comparison is made once
for every character of the text. An example of this is with a text
“Hey Jude don’t make it bad zzz” with a pattern “zzz”.

An average-case scenario has the time complexity O(m+n).
A time complexity of O(m+n) means that for average cases,
the brute-force algorithm can be categorized as being quick.

It is important to note that due to its characteristics the
brute-force algorithm is fast if the alphabet of the text is large.
For example, an everyday alphabet of 26 characters of A-Z. On
the other hand, the algorithm becomes slower when the
alphabet of the text is small. For example, in the case of binary
numbers of between 0 and 1.

C. Music Notation
Music has always been a part of human life. Throughout all

cultures across the world, there is also a culture of music.
Through the ages, back in prehistoric times until now, humans
have always found a use for music. Whether it be just for
entertainment or for higher purposes such as religion.
However, through time it has become apparent that musical
ideas gradually became more complicated and structured.
Thus, to communicate these musical ideas between musicians,
there needs to be a formalization and standardization of music
so as not to give confusion and miscommunication. Each
culture has their own way of communicating and expressing
musical ideas, each with their own method and purposes. But
for the sake of universality, western musical notation has
become the standard for expressing musical ideas worldwide.

An octave is an interval between a note and another that has
double its vibrating frequency. Western music theory uses a
system of twelve-tone equal temperament. This means that in
an octave, there are twelve tones that are equally spaced out
with a ratio of 12√2 between one tone and the next. The
smallest interval between a tone and its neighboring tone is
called a semitone. To identify these tones, letters A to G are
labelled as shown in the piano octave below.

Fig. 2.2. Twelve-tone equal temperament in an octave on a piano.

Notice that letters A to G are not enough to label all the
twelve notes in an octave. Therefore, two symbols are
introduced to further distinguish these notes. A sharp, ♯, takes a
note and transposes it higher by one semitone. For example, a
C♯ is a semitone higher than its normal counterpart C. A flat, ♭,
takes a note and transposes it lower by one semitone. For
example, a B♭ is a semitone lower than its normal counterpart
B. As an additional note, a natural, ♮, is used to bring back the
pitch of a previously sharpened or flattened note back to its
normal pitch. For example, a C♮ is essentially the same as a C.

To write music, a staff acts like a line in normal everyday
writing. The staff comprises of five horizontal lines with four
spaces between them. Notes are written on these horizontal
lines and spaces to represent different pitches or tones.

Fig. 2.3. A staff with notes.

To represent time and rhythm, the western music notation

uses different note and rest symbols denoting a specific time
value.

Fig. 2.4. Semibreve, minim, crotchet, quaver, and semiquaver notes.

Fig. 2.5. Semibreve, minim, crotchet, quaver, and semiquaver rests.

A semibreve holds a beat value of 4. A minim holds a beat

value of 2. A crotchet holds a beat value of 1. A quaver holds a
beat value of ½. A semiquaver holds a beat value of ¼. The
difference between a note and a rest is that during a note, the
player of the instrument plays the note with the corresponding
pitch, and during a rest, the player does not play anything.
Keep in mind there is also a dotted note, which means to add
another half value to the note dotted. For example, a dotted
semibreve note has a beat value of 6.

These beat values loosely define the time required to hold
these notes and rests. The length of a beat is defined by the
tempo of the composition where in modern music is
represented by how many beats per minute (BPM) there are.

D. Theme
A theme or a subject is the main recognizable material of

composition. Usually, it is in the form of a melody that can be
heard throughout the composition. The theme serves as the
building block to which the entire composition is built upon.
Throughout a composition, the theme may be changed to give
its variations as an exploration of musical ideas.

Perhaps the most famous example of a theme in the western
classical music repertoire is the Ode to Joy theme in the fourth
movement of Ludwig van Beethoven’s Symphony No. 9 in D
minor, Op. 125, first introduced in bar 92 in the strings section.

IF2211 Algorithm Strategies Paper, Semester II Year 2021/2022

Fig. 2.6. Ode to Joy theme from Beethoven’s Symphony No. 9.

This theme, like a good theme is supposed to function,

stands out and is memorable. It is then explored intensively all
throughout the symphony’s fourth movement through a variety
of variations, including a turkish march section, a double fugue
with another theme, and several codas near the end.

E. Fugue
A fugue is a style of composition dominantly used in the

baroque period of western classical music. It comprises of a
main theme that is introduced at the beginning of the
composition which is then repeated successively in imitation
frequently throughout the whole composition. Each voice or
each melody line imitates the initial theme in a contrapuntal
manner through a variety of techniques from transposing the
theme to a different pitch all the way to the inversion of the
theme.

An example of a fugue with its theme and imitations can be
found on the fugue section of Johann Sebastian Bach’s Prelude
and Fugue in C major, BWV 846 from his Well-Tempered
Clavier, Book I.

Fig. 2.7. Main theme (light blue) with imitations (yellow and light purple).

Fig. 2.7 shows how in the fugue section of Prelude and

Fugue in C major the theme is introduced in the start
highlighted in light blue. Then, the theme is imitated in another
voice entering bar 3, transposed up to a higher pitch
highlighted in yellow. The theme is imitated yet again in bar 4
in another voice, in a lower pitch as shown in light purple. This
imitation of the theme continues to happen all throughout the
composition.

What makes a fugue difficult to compose is the challenge to
keep the imitation as if to sound independent from each other,
acting as their own melodic lines. In other words, to maintain

its counterpoint nature. An imitation of a theme is not enough,
but how the imitation of the theme sounds pleasant to the ear
harmonically proves to be a challenge.

III. IMPLEMENTATION
The identification of the theme imitation in a fugue will be

found by using the brute-force string-matching algorithm. As
the theme is a short passage that is being matched and searched
in the composition in hopes of finding its imitations, it takes
the place of the pattern. The composition itself will represent
the text being matched upon by the pattern. The result of the
string-matching algorithm will be the imitations of the theme
found in the composition.

It is obvious that the notes making up the composition
represent the characters in a string for either the pattern or text.
However, simply representing a character by their note (for
example, C, D, B♭, F♯) becomes a problem. If the imitation
starts and ends in the same pitch as the theme, then this
approach is safe. For example, if we have a theme with the
notes C-D-E-F-G which is then imitated yet again with the
same notes C-D-E-F-G. The imitation will surely be identified
by the approach of representing a character with the note.

This approach becomes a problem if the imitation is in a
different pitch. Yet, it is fundamental to composing a fugue that
the imitation starts on a different pitch, so that the composition
stays harmonically pleasant and moving. For example, the
same previous theme example with notes C-D-E-F-G and is
then repeated in imitation in the composition with the notes G-
A-B-C-D. Musically, this succession is completely legal to be
considered an imitation of a theme in a fugue as they both have
the same intervals harmonically. But because the previous
approach string matches the note name, this imitation will not
be identified. This is already apparent from the first note of the
theme C and imitation G which are clearly different.

To fix this issue, a different approach is chosen to represent
the notes in the pattern and the text. Rather than simply using
the symbols of the notes, the interval between a note and the
next is used instead. These intervals between notes then make
up an array of intervals. An increase in one semitone is
represented by the value 1, whereas a decrease in one semitone
is represented by -1. Other intervals follows and no change in
pitch equals 0. For example, take the simple melody below as
a theme.

Fig. 3.1. A simple theme.

The simple theme shown in Fig. 3.1 with notes A-B-G-A

can be represented with the interval 2 (from A to B), -4 (from
B to G), and 2 (from G to A). Then, follows an imitation as
below.

Fig. 3.2. An imitation of previous theme.

IF2211 Algorithm Strategies Paper, Semester II Year 2021/2022

The imitation shown in Fig. 3.2 with notes D-E-C-D can be

represented with the interval 2 (from D to E), -4 (from E to C),
and 2 (from C to D). This sequence of interval is the same as
the theme. And so, this approach allows the identification of
the imitation even when having different pitches, but still
maintaining the same semitone intervals which covers a lot of
scenarios in the imitation of a theme in a fugue.

Further assumptions are made to model the problem at
hand. First, because the approach to use the interval between
two notes are used, this means any rests between two notes are
ignored completely. For example, say there is a D crotchet note
followed by a minim rest and finally an E crochet note.
Through this approach, there is no way to represent the minim
rest and so the array is just filled with the element 2 to
represent the D note going to E.

Secondly, although timing and rhythm is important to the
identity of a theme, as only the interval between notes are
measured there is no way to distinguish between the different
types of notes and timings there are. For example, a D crotchet
note followed by an E minim note is no different than a D
minim followed by an E crotchet note. Although rhythm
analysis is important to identifying the theme and its imitation,
for the sake of simplicity it is ignored. With those assumptions
made, therefore the only factor in determining the imitation of
the theme is purely from the intervals of its notes.

The brute-force string matching algorithm used to identify
the imitation of the theme follows the general implementation
of the pseudocode below.
procedure BruteForce (input P : Array of integer, input
T : Array of integer, output occurrence : Array of
integer)
{ P is list for Pattern, T is list for Text.
 M is length of Pattern, N is length of Text.
 occurrence is list for occurrence of Pattern in Text,
 occurrence is initialized empty. }
VARIABLES
 M, N : integer
 i, j : integer
ALGORITHM
 M ← { length of P }
 N ← { length of T }
 i traversal [0..N-M]
 j ← 0

 while (j < M) and (P[j] = T[i+j]) do
 j ← j + 1
 if (j = M) then
 { add index where Pattern is found to list of
 occurrences}
 occurrence.add(i)

 To use the algorithm, the user must input an array of
integers for the text which in this case is the note intervals of
the text, and an array of integers for the pattern which is the
note intervals of the theme.

 A thing to keep in mind with the algorithm above is that it
will take note every index in which the occurrence of the
pattern exists on the text. To put it back to the perspective of
the theme and its imitation, the list of occurrences will take
note in which note intervals the imitation of the theme starts.

Although the theme is guaranteed to be found at the start of
the fugue, for the purpose of generality the whole composition
from the start including the theme is included in the text. This
means that the interval at index 0 is bound to have the theme as
an imitation, only if the theme pattern inputted is the same
theme in the start of the composition.

For the purposes of writing this paper, the author has
included a short fugal excerpt as shown in Fig. 3.3 that
demonstrates the algorithm. The excerpt contains a theme
based on the opening melody of a classic Indonesian children
song, Naik Naik ke Puncak Gunung.

The theme of the fugue as will be inputted into the
algorithm is as shown below.

Fig. 3.4. Theme of fugal excerpt.

This theme serves as the pattern for the algorithm. Next, the

theme must be converted to an array of integers which
represent note intervals.

P = [5, 0, 0, 2, 2, 0, 0, -4]

Fig. 3.3. A short fugal excerpt based on the melody of Naik Naik ke Puncak Gunung.

IF2211 Algorithm Strategies Paper, Semester II Year 2021/2022

The text inputted is the entire note intervals of the whole
composition.

T = [5, 0, 0, 2, 2, 0, 0, -4, 7, -2, -1, -2, -2, -1, 1, 2,
 5, 0, 0, 2, 2, 0, 0, -4, -2, -1, -2, -5, -4, 5, 0, 0,
 2, 2, 0, 0, -4, -2, -1, -2, -2, -1, 3, 4, 5, 0, 0, 2,
 2, 0, 0, -4, -1, -2, 2, 1, 2, 2, 1, 2, -2]

Applying the brute-force string algorithm will take on the
steps as shown in Fig. 3.5 where the first row of the table is the
text or composition, and the successive rows are the string
matching of the pattern or theme to each note interval on the
composition. A total of 82 character comparisons are made
throughout the search. The result is that the imitation of the

theme starts at interval of index 0, 16, 29, and 44. Other than
the theme itself at index 0, this means that in the composition
there are 3 imitations of the theme.

The corresponding imitations in the resulting interval
indices are the equivalent of the highlighted musical notation as
shown in Fig. 3.6. It shows that the theme begins at the start of
the composition in the key of G major. It is then followed by a
couple of notes before reaching the first imitation transposed to
the key of D major in a higher register on the pickup to bar 7.
A series of notes then follows again until the second imitation
in the key of F major in a lower register on the pickup to bar
12. The third and last imitation is heard in the key of A major
on the pickup to bar 17.

Fig. 3.5. Steps on the brute-force algorithm on the theme and composition of the fugal excerpt.

IF2211 Algorithm Strategies Paper, Semester II Year 2021/2022

IV. ANALYSIS
The fugal excerpt incidentally acts as a best-case scenario

for the brute-force string matching algorithm as the theme has a
beginning jump from a fifth to a root note in a higher octave
represented by the first interval at index 0 with a value 5. This
interval of value 5 is not seen throughout the composition or
text other than the case of the theme imitations. Therefore, it
only takes the first index of the pattern to check that the pattern
does not match the text except where an imitation occurs.
However, this best-scenario where the first note interval is
distinct enough from the rest of the intervals in the composition
realistically will not always happen.

It becomes apparent that as the size of the composition
grows, many more string matching needs to be done. Also, the
fugal excerpt does not reflect the condition of a composition as
per usual in the real world. A real composition will take the
form of many instruments, and each with their own clefs and
voices. And so, these different clefs and voices need to be
checked one by one to see if they contain the imitation to the
theme.

Due to the assumptions previously made, only using the
intervals of successive notes becomes the bottleneck of this
approach. If a passage has the same note intervals as the theme
but having different timings, the algorithm will pass this
passage as an imitation of the theme. However, musically this
is not correct as both the timing and rhythm makes up the
identity of the theme.

Another problem occurs in how each successive imitations
derive from the initial theme of the fugue. This approach only
works if the intervals of the imitations are identical to the
theme. However, legally an imitation does not need to have the
same intervals as the theme. It only needs to take the general
melodic direction of the theme. This problem is further
magnified if the imitation derives from the theme in an inverted
manner. This means the general direction of the imitation is
upside down, where notes that move up in the theme move
down in the imitation, and in turn notes that go down in the
theme go up in the imitation.

V. CONCLUSION
The brute-force string matching algorithm successfully

identified the imitation of a theme in a fugue. Overall, the
approach of representing the composition, theme and imitations
using their note intervals is passable for simple to intermediate
fugue examples. A best-case scenario happens when the
interval between the first and second note is unique enough that
it does not appear frequently in the whole composition except
when the imitations occur.

However, problems arise if the imitations derive too much
from the theme in a manner chaotic so that the intervals
change. Problems also arise as the approach used does not
account for the timing and rhythm of each note which is
essential to the identity of the initial theme.

The author would like to give a few recommendations to
help future research in this topic. First, more efficient
algorithms can be used to do the string matching such as
Knuth–Morris–Pratt algorithm or the Boyer–Moore algorithm.
Secondly, a better representation of the notes other than the one
used in this paper could be used to also represent the time
values of each note. Lastly, rather than using exact string-
matching algorithms, approximate string-matching algorithms
such as Levenshtein distance could be used instead to solve the
problem of similar yet unidentical intervals in the imitation to
the theme.

VIDEO LINK AT YOUTUBE
https://youtu.be/GxJuw6K6EwQ

ACKNOWLEDGMENT
The author would like to bestow the highest gratitude to Dr.

Nur Ulfa Maulidevi, S.T., M.Sc. as the lecturer of IF2211
Algorithm Strategies along with other Algorithm Strategies
lecturers for having taught all their knowledge as well as giving
the author the opportunity to write this paper. The author
would also like warmly thank friends and family that has
played an integral role in helping the author in any way to
finish this paper.

Fig. 3.6. Theme (light blue) and imitation (yellow) of the short fugal excerpt.

https://youtu.be/GxJuw6K6EwQ

IF2211 Algorithm Strategies Paper, Semester II Year 2021/2022

REFERENCES
[1] Munir, Rinaldi. 2021. Pencocokan String (String/Pattern Matching).

[online] Available at:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/
Pencocokan-string-2021.pdf [Accessed 20 May 2022]

[2] Cormen, T., 2009. Introduction to algorithms. Cambridge, Mass.: MIT
Press.

[3] Strayer, H.R., 2013. From neumes to notes: The evolution of music
notation.

[4] Mann, A., 1987. The study of fugue. Courier Corporation.
[5] Beethoven, L.V., 1824. Symphony No. 9 in D minor, Op. 125.
[6] Bach, J.S., 1722. Prelude and Fugue in C major, BWV 846. Das

wohltemperierte Klavier I.

DECLARATION
I hereby declare that this paper is of my own writing, nor is it
an adaptation or translation of another paper, nor a result of
plagiarism.

Bandung, 22 Mei 2022

Ahmad Alfani Handoyo
13520023

https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-2021/%0bPencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-2021/%0bPencocokan-string-2021.pdf

	I. Introduction
	II. Basic Theory
	A. String Matching
	B. Brute-Force Algorithm
	C. Music Notation
	D. Theme
	E. Fugue

	III. Implementation
	IV. Analysis
	V. Conclusion
	Video Link at Youtube
	Acknowledgment
	References
	Declaration

